sklearn.base.ClassifierMixin¶
- class sklearn.base.ClassifierMixin[source]¶
Mixin class for all classifiers in scikit-learn.
Methods
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels. - __init__()¶
x.__init__(...) initializes x; see help(type(x)) for signature
- score(X, y, sample_weight=None)[source]¶
Returns the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
Parameters: X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True labels for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: score : float
Mean accuracy of self.predict(X) wrt. y.