sklearn.gaussian_process.kernels.ConstantKernel¶
- class sklearn.gaussian_process.kernels.ConstantKernel(constant_value=1.0, constant_value_bounds=(1e-05, 100000.0))[source]¶
Constant kernel.
Can be used as part of a product-kernel where it scales the magnitude of the other factor (kernel) or as part of a sum-kernel, where it modifies the mean of the Gaussian process.
k(x_1, x_2) = constant_value for all x_1, x_2
Parameters: constant_value : float, default: 1.0
The constant value which defines the covariance: k(x_1, x_2) = constant_value
constant_value_bounds : pair of floats >= 0, default: (1e-5, 1e5)
The lower and upper bound on constant_value
Methods
clone_with_theta(theta) Returns a clone of self with given hyperparameters theta. diag(X) Returns the diagonal of the kernel k(X, X). get_params([deep]) Get parameters of this kernel. is_stationary() Returns whether the kernel is stationary. set_params(**params) Set the parameters of this kernel. - bounds¶
Returns the log-transformed bounds on the theta.
Returns: bounds : array, shape (n_dims, 2)
The log-transformed bounds on the kernel’s hyperparameters theta
- diag(X)[source]¶
Returns the diagonal of the kernel k(X, X).
The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated.
Parameters: X : array, shape (n_samples_X, n_features)
Left argument of the returned kernel k(X, Y)
Returns: K_diag : array, shape (n_samples_X,)
Diagonal of kernel k(X, X)
- get_params(deep=True)[source]¶
Get parameters of this kernel.
Parameters: deep: boolean, optional :
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
- hyperparameters¶
Returns a list of all hyperparameter specifications.
- n_dims¶
Returns the number of non-fixed hyperparameters of the kernel.
- set_params(**params)[source]¶
Set the parameters of this kernel.
The method works on simple kernels as well as on nested kernels. The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns: self :
- theta¶
Returns the (flattened, log-transformed) non-fixed hyperparameters.
Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale.
Returns: theta : array, shape (n_dims,)
The non-fixed, log-transformed hyperparameters of the kernel