Fork me on GitHub

This documentation is for scikit-learn version 0.18.dev0Other versions

If you use the software, please consider citing scikit-learn.

3.2.4.1.2. sklearn.linear_model.LarsCV

class sklearn.linear_model.LarsCV(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True, positive=False)[source]

Cross-validated Least Angle Regression model

Read more in the User Guide.

Parameters:

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).

positive : boolean (default=False)

Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default.

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also be passed as argument.

max_iter: integer, optional :

Maximum number of iterations to perform.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

  • None, to use the default 3-fold cross-validation,
  • integer, to specify the number of folds.
  • An object to be used as a cross-validation generator.
  • An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

max_n_alphas : integer, optional

The maximum number of points on the path used to compute the residuals in the cross-validation

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems.

Attributes:

coef_ : array, shape (n_features,)

parameter vector (w in the formulation formula)

intercept_ : float

independent term in decision function

coef_path_ : array, shape (n_features, n_alphas)

the varying values of the coefficients along the path

alpha_ : float

the estimated regularization parameter alpha

alphas_ : array, shape (n_alphas,)

the different values of alpha along the path

cv_alphas_ : array, shape (n_cv_alphas,)

all the values of alpha along the path for the different folds

cv_mse_path_ : array, shape (n_folds, n_cv_alphas)

the mean square error on left-out for each fold along the path (alpha values given by cv_alphas)

n_iter_ : array-like or int

the number of iterations run by Lars with the optimal alpha.

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
__init__(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True, positive=False)[source]
decision_function(*args, **kwargs)[source]

DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

Parameters:

X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns:

C : array, shape = (n_samples,)

Returns predicted values.

fit(X, y)[source]

Fit the model using X, y as training data.

Parameters:

X : array-like, shape (n_samples, n_features)

Training data.

y : array-like, shape (n_samples,)

Target values.

Returns:

self : object

returns an instance of self.

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters:

deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:

params : mapping of string to any

Parameter names mapped to their values.

predict(X)[source]

Predict using the linear model

Parameters:

X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns:

C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)[source]

Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters:

X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns:

score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns:self :
Previous