sklearn.model_selection.LabelKFold¶
- class sklearn.model_selection.LabelKFold(n_folds=3)[source]¶
K-fold iterator variant with non-overlapping labels.
The same label will not appear in two different folds (the number of distinct labels has to be at least equal to the number of folds).
The folds are approximately balanced in the sense that the number of distinct labels is approximately the same in each fold.
Parameters: n_folds : int, default=3
Number of folds. Must be at least 2.
See also
- LeaveOneLabelOut
- For splitting the data according to explicit domain-specific stratification of the dataset.
Examples
>>> from sklearn.model_selection import LabelKFold >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> labels = np.array([0, 0, 2, 2]) >>> label_kfold = LabelKFold(n_folds=2) >>> label_kfold.get_n_splits(X, y, labels) 2 >>> print(label_kfold) LabelKFold(n_folds=2) >>> for train_index, test_index in label_kfold.split(X, y, labels): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) ... TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [3 4] TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [3 4] [1 2]
Methods
get_n_splits([X, y, labels]) Returns the number of splitting iterations in the cross-validator split(X[, y, labels]) Generate indices to split data into training and test set. - get_n_splits(X=None, y=None, labels=None)[source]¶
Returns the number of splitting iterations in the cross-validator
Parameters: X : object
Always ignored, exists for compatibility.
y : object
Always ignored, exists for compatibility.
labels : object
Always ignored, exists for compatibility.
Returns: n_splits : int
Returns the number of splitting iterations in the cross-validator.
- split(X, y=None, labels=None)[source]¶
Generate indices to split data into training and test set.
Parameters: X : array-like, shape (n_samples, n_features)
Training data, where n_samples is the number of samples and n_features is the number of features.
y : array-like, shape (n_samples,), optional
The target variable for supervised learning problems.
labels : array-like, with shape (n_samples,), optional
Group labels for the samples used while splitting the dataset into train/test set.
Returns: train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.