Fork me on GitHub

sklearn.model_selection.ParameterGrid

class sklearn.model_selection.ParameterGrid(param_grid)[source]

Grid of parameters with a discrete number of values for each.

Can be used to iterate over parameter value combinations with the Python built-in function iter.

Read more in the User Guide.

Parameters:

param_grid : dict of string to sequence, or sequence of such

The parameter grid to explore, as a dictionary mapping estimator parameters to sequences of allowed values.

An empty dict signifies default parameters.

A sequence of dicts signifies a sequence of grids to search, and is useful to avoid exploring parameter combinations that make no sense or have no effect. See the examples below.

See also

GridSearchCV

Uses
class:ParameterGrid to perform a full parallelized parameter search.

Examples

>>> from sklearn.model_selection import ParameterGrid
>>> param_grid = {'a': [1, 2], 'b': [True, False]}
>>> list(ParameterGrid(param_grid)) == (
...    [{'a': 1, 'b': True}, {'a': 1, 'b': False},
...     {'a': 2, 'b': True}, {'a': 2, 'b': False}])
True
>>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}]
>>> list(ParameterGrid(grid)) == [{'kernel': 'linear'},
...                               {'kernel': 'rbf', 'gamma': 1},
...                               {'kernel': 'rbf', 'gamma': 10}]
True
>>> ParameterGrid(grid)[1] == {'kernel': 'rbf', 'gamma': 1}
True
.. automethod:: __init__
Previous