sklearn.preprocessing.MultiLabelBinarizer¶
- class sklearn.preprocessing.MultiLabelBinarizer(classes=None, sparse_output=False)[source]¶
Transform between iterable of iterables and a multilabel format
Although a list of sets or tuples is a very intuitive format for multilabel data, it is unwieldy to process. This transformer converts between this intuitive format and the supported multilabel format: a (samples x classes) binary matrix indicating the presence of a class label.
Parameters: classes : array-like of shape [n_classes] (optional)
Indicates an ordering for the class labels
sparse_output : boolean (default: False),
Set to true if output binary array is desired in CSR sparse format
Attributes: classes_ : array of labels
A copy of the classes parameter where provided, or otherwise, the sorted set of classes found when fitting.
Examples
>>> mlb = MultiLabelBinarizer() >>> mlb.fit_transform([(1, 2), (3,)]) array([[1, 1, 0], [0, 0, 1]]) >>> mlb.classes_ array([1, 2, 3])
>>> mlb.fit_transform([set(['sci-fi', 'thriller']), set(['comedy'])]) array([[0, 1, 1], [1, 0, 0]]) >>> list(mlb.classes_) ['comedy', 'sci-fi', 'thriller']
Methods
fit(y) Fit the label sets binarizer, storing classes_ fit_transform(y) Fit the label sets binarizer and transform the given label sets get_params([deep]) Get parameters for this estimator. inverse_transform(yt) Transform the given indicator matrix into label sets set_params(**params) Set the parameters of this estimator. transform(y) Transform the given label sets - fit(y)[source]¶
Fit the label sets binarizer, storing classes_
Parameters: y : iterable of iterables
A set of labels (any orderable and hashable object) for each sample. If the classes parameter is set, y will not be iterated.
Returns: self : returns this MultiLabelBinarizer instance
- fit_transform(y)[source]¶
Fit the label sets binarizer and transform the given label sets
Parameters: y : iterable of iterables
A set of labels (any orderable and hashable object) for each sample. If the classes parameter is set, y will not be iterated.
Returns: y_indicator : array or CSR matrix, shape (n_samples, n_classes)
A matrix such that y_indicator[i, j] = 1 iff classes_[j] is in y[i], and 0 otherwise.
- get_params(deep=True)[source]¶
Get parameters for this estimator.
Parameters: deep: boolean, optional :
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
- inverse_transform(yt)[source]¶
Transform the given indicator matrix into label sets
Parameters: yt : array or sparse matrix of shape (n_samples, n_classes)
A matrix containing only 1s ands 0s.
Returns: y : list of tuples
The set of labels for each sample such that y[i] consists of classes_[j] for each yt[i, j] == 1.
- set_params(**params)[source]¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns: self :
- transform(y)[source]¶
Transform the given label sets
Parameters: y : iterable of iterables
A set of labels (any orderable and hashable object) for each sample. If the classes parameter is set, y will not be iterated.
Returns: y_indicator : array or CSR matrix, shape (n_samples, n_classes)
A matrix such that y_indicator[i, j] = 1 iff classes_[j] is in y[i], and 0 otherwise.