sklearn.model_selection.LeavePLabelOut¶
- class sklearn.model_selection.LeavePLabelOut(n_labels)[source]¶
Leave P Labels Out cross-validator
Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers.
For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits.
The difference between LeavePLabelOut and LeaveOneLabelOut is that the former builds the test sets with all the samples assigned to p different values of the labels while the latter uses samples all assigned the same labels.
Read more in the User Guide.
Parameters: n_labels : int
Number of labels (p) to leave out in the test split.
See also
- LabelKFold
- K-fold iterator variant with non-overlapping labels.
Examples
>>> from sklearn.model_selection import LeavePLabelOut >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y = np.array([1, 2, 1]) >>> labels = np.array([1, 2, 3]) >>> lpl = LeavePLabelOut(n_labels=2) >>> lpl.get_n_splits(X, y, labels) 3 >>> print(lpl) LeavePLabelOut(n_labels=2) >>> for train_index, test_index in lpl.split(X, y, labels): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2] TEST: [0 1] [[5 6]] [[1 2] [3 4]] [1] [1 2] TRAIN: [1] TEST: [0 2] [[3 4]] [[1 2] [5 6]] [2] [1 1] TRAIN: [0] TEST: [1 2] [[1 2]] [[3 4] [5 6]] [1] [2 1]
Methods
get_n_splits(X, y, labels) Returns the number of splitting iterations in the cross-validator split(X[, y, labels]) Generate indices to split data into training and test set. - get_n_splits(X, y, labels)[source]¶
Returns the number of splitting iterations in the cross-validator
Parameters: X : object
Always ignored, exists for compatibility.
y : object
Always ignored, exists for compatibility.
labels : array-like, with shape (n_samples,), optional
Group labels for the samples used while splitting the dataset into train/test set.
Returns: n_splits : int
Returns the number of splitting iterations in the cross-validator.
- split(X, y=None, labels=None)[source]¶
Generate indices to split data into training and test set.
Parameters: X : array-like, shape (n_samples, n_features)
Training data, where n_samples is the number of samples and n_features is the number of features.
y : array-like, shape (n_samples,)
The target variable for supervised learning problems.
labels : array-like, with shape (n_samples,), optional
Group labels for the samples used while splitting the dataset into train/test set.
Returns: train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.